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Abstract

Detecting mismatches between the world and our model of it is a fundamental aspect of
our cognitive capacities. Mismatches reveal the presence of elements and situations that
we did not expect, and thus, have not prepared for, often demanding changes in behavior.
Additionally, mismatches frequently expose errors in our model of the world, thus providing
a useful learning signal. Furthermore, mismatches between the world and our motivations
directly indicate situations in which actions should be taken. In spite of the importance
and pervasive character of mismatch detection in cognition, its neural implementation is
not well understood. This contributes to the lack of common sense often displayed by
artificial intelligence systems that are based on neural networks. In this thesis, we present a
novel neural network architecture that has mismatch detection as the basis of its operation.
The network will signal the presence of unexpected elements (mismatch by excess) and
the absence of expected ones (mismatch by deficit). The neurons of the network include
biologically inspired dendritic nonlinearities that increase their discriminatory capacity. We
introduce a rule for learning the associations between concepts which operates using local
information and resembles the mechanism of synaptic tagging and capture of biological
neurons. This rule will ensure that connections from different input combinations cluster
onto different dendrites, and can also be used to learn the association between desires and the
actions that are needed in order to fulfill them. The model is applied to a navigation task in
order to demonstrate its capabilities. A navigation system based on the mismatch detection
circuit is proposed, where the environment is encoded as a series of landmarks and their
relative positions, inspired by findings in animal spatial cognition. The system is simulated
in a simple virtual environment, where it detects the addition and removal of landmarks. The
mismatch detection network could have applications in artificial intelligence and may also
offer insights about how learning and mismatch detection happen in biological brains.
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Chapter 1

Introduction

This thesis presents a novel neural mismatch detection circuit applied to a navigation task.
The structure of the thesis is as follows. In this introductory chapter, the problems of
mismatch detection and navigation are presented and the related literature is reviewed. In
Chapter 2, the models developed for the mismatch detection circuit and the navigation
system are described. Chapter 3 contains simulation results for both, and chapter 4 a general
discussion. The reader can choose whether to proceed in this order or to read the sections
pertaining to the mismatch detection circuit first, followed by the sections related to the
navigation system.

1.1 Mismatch Detection

Imagine that upon returning home, you find that the floor has new tiles, your bed has shrunk
in size and the lamps are missing. You will quickly notice these facts and find them puzzling.
This example illustrates an activity we effortlessly engage in all the time, namely, checking
whether what we experience matches with our models of the world and detecting when those
models fail.

Why would we engage in such a burdensome task? One possible reason is that mismatches
between the world and our model of it expose errors in our model that need to be corrected,
thus providing a useful learning signal. However, not all mismatches require learning, at least
not of a durable kind. For instance, the realization that a car is approaching the road that you
are about to cross will produce a brief mismatch signal, since you were unaware of it. This
mismatch will, nevertheless, disappear as soon as the activations in the model are updated to
reflect the new state of affairs, without any learning being required since you already knew
that cars go on the road. There is, however, a reason that makes all mismatches equally
relevant, and that is the fact that they indicate the presence of elements and situations that
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you did not predict, or could not have predicted, and that therefore you have not prepared for,
often demanding changes in behavior. This becomes particularly relevant in the context of a
system with limited cognitive resources that can not process all stimuli to the same extent
and thus requires some mechanism to select the information that it will focus on.

Another case in which mismatch detection is fundamental is when the world is being
compared to your desires. Here, mismatches directly indicate situations in which actions
should be taken.

Despite the differences in the cause of the mismatch across the cases mentioned, the
nature of the mismatches themselves seems to be essentially the same. At a fundamental
level, mismatches can be classified into two categories. First, there can be some element in
the world that is not active in the model, thus, the presence of this element is unexplained or
unjustified. We will call this mismatch by excess, due to the presence of this "extra" element
that is not supported by the model. Otherwise, we may have the opposite case; there can be an
active element in the model that is missing in the world. We will call this mismatch by deficit,
meaning that there is a lack of some element in the world with respect to our model. The
apparently more complicated case of deformations can also be construed in terms of these
two types of mismatch: shifted elements may elicit excess mismatches at their new positions
and deficit mismatches at their reference ones; alternatively, if the pattern is encoded in a
relational manner, excess and deficit mismatches may arise for the magnitudes that relate the
elements to each other. Since mismatches reduce to these two simple categories, it seems
plausible that a single mechanism, or at least similar mechanisms, could explain mismatch
detection in general.

In spite of the relevance and pervasive character of mismatch detection in cognition, its
neural implementation is not well understood. Perhaps because of this, artificial intelligence
systems that are largely based on artificial neural networks generally also lack this capability.
This fact accounts for the failure of most AI systems to react appropriately to errors and
anomalies, which makes them appear to lack common sense and true understanding.

1.1.1 Mismatch Signals in the Brain

Perhaps the most obvious form of mismatch signal that has been measured in the human
brain is the so called Mismatch Negativity (MMN). This is a component of the event-related
potential that is measured in response to odd stimuli. In a common experiment, rare deviant
sounds are interspersed among a series of repetitive standard sounds, provoking the MMN.
The phenomenon has been observed for a wide range of auditory stimuli, including abstract
changes such as grammar violations, as well as for stimuli in the somatosensory, olfactory
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and visual domains. The MMN is also elicited by omissions of expected stimuli (SanMiguel
et al. (2013), Salisbury (2012); and see Näätänen et al. (2007) for a review).

A related, if not the same, kind of signal has been recorded using two-photon imaging
in behaving mice. Keller et al. (2012) report that responses in layer 2/3 of mouse primary
visual cortex are strongly driven by mismatch between actual and expected visual feedback
based on locomotion. Fiser et al. (2016) further report that a subset of neurons, again in layer
2/3 of mouse V1, exhibit responses that are predictive of the upcoming visual stimulus in a
spatially dependent manner and that the omission of expected stimuli drives strong responses
in the area.

The hippocampus is also believed to be involved in match/mismatch detection. It is
hypothesized that area CA1 may act as a comparator between predictions arriving from
CA3 and "reality" arriving from the cortex. This mismatch signal would be used to adapt its
dynamics for learning or recall (Hasselmo and Schnell (1994), Lisman and Grace (2005)).
Consistent with this hypothesis, fMRI studies by Kumaran and Maguire (2007), Chen et al.
(2011) and Duncan et al. (2012) have found that area CA1 exhibits a pattern of activity
consistent with that of an associative match/mismatch detector.

Midbrain dopaminergic neurons are also known to code for a signed error in prediction
of reward. Unpredictable rewards reliably elicit neuronal activations. If the reward becomes
predictable, the activations elicited in response to it decrease and shift towards the reward-
predicting stimulus. If however, the reward fails to occur, dopamine neurons are depressed
below baseline at the time when the reward was expected (Hollerman and Schultz, 1998)).

For an older but extensive review on neural coding of prediction errors, see Schultz and
Dickinson (2000).

1.1.2 Predictive Coding

The Mismatch Negativity and related mismatch signals are often interpreted under the light
of predictive coding. The basic idea of predictive coding is that higher-level areas constantly
send predictions to lower-level areas producing prediction errors. These predictions errors
are in turn sent back to the higher-level areas to update their hypothesis.

Rao and Ballard (1999) first proposed predictive coding as a model of cortical processing
in order to explain neurons with extra-classical receptive fields in visual cortical areas. These
are neurons, abundant in layers 2/3, that respond to an optimally oriented line segment of a
certain (small) longitude, but whose response is reduced or eliminated when the longitude of
the segment increases. Rao and Ballard suggested that these neurons coded for prediction
errors which were caused by the line segment being too short to activate the corresponding
higher-level representation that would explain away the error. A simplified version of their
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neural circuit for predictive coding is illustrated in Fig. 1.1. Wacongne et al. (2012) have also
proposed a model based on predictive coding that accounts for some critical features of the
MMN in auditory cortex.

feature neurons

error neurons

stage nstage n-1 stage n+1

Fig. 1.1 Basic predictive coding neural circuit, adapted from Rao and Ballard (1999). The
complete circuit is only drawn for the central feature, and only one feature per stage is shown.
Connections ending in an arrow are excitatory, whereas those ending in a circle are inhibitory.

Predictive coding has been mathematically formalized and has been shown to approximate
Bayesian inference based on the minimization of a function referred to in statistics as free-
energy (Friston (2005), Bogacz (2017)). A further advantage of the model is that computation
is local, with the rules describing the weight updates being Hebbian, proportional to the
activation levels of the pre- and post-synaptic neurons. This adds to the model’s biological
plausibility. Bastos et al. (2012) have even proposed a mapping of the model onto the
canonical microcircuit postulated by Douglas et al. (1989).

Predictive coding is thus an elegant model with plenty of explanatory success. However,
some of its features are not fully satisfactory. For instance, the model does not seem to be
well suited to explain the detection of mismatches where the expected element is found to be
missing. In these cases, error neurons only receive the prediction input, but since predictions
are inhibitory, this leads to negative activation levels. These can not be communicated in
the brain by means of action potentials, unless the neurons have a high baseline rate and
negative activation levels correspond to firing rates below baseline. However, this would
be energetically inefficient, and would also require further circuitry in order to be used.
Predictive coding therefore seems to account only for one of the two types of mismatch,
namely, mismatch by excess but not by deficit.

Another possibly problematic feature of the model is that information to the next area
in the hierarchy stems only from the error neurons, that is, information is only conveyed
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when there is an error. This is typically advertised as the main virtue of predictive coding,
since it would lead to less message passing and thus higher energetic efficiency. However,
it would also mean that once a stimulus is explained, it virtually disappears for the system
and would not be able to participate in any additional operation. This does not seem to be
advantageous or match our introspective experience. According to predictive coding, when
in a familiar setting, the world should literally disappear, and although it is true that attention
will typically be allocated to mismatches, it is not the case that explained phenomena vanish
and become inaccessible.

1.1.3 Other Models of Mismatch Detection

Besides predictive coding, other more specialized neural models have been proposed to
address specifically the generation of match/mismatch judgments.

For example, Johnson et al. (2009) propose a dynamic neural fields model (Schöner
et al., 2016) for working memory and change detection. The model consists of an excitatory
perceptual field, an excitatory working memory field and a shared inhibitory field that is
reciprocally connected to both excitatory fields. Inputs arrive to the perceptual field, where
they form a peak of activation which then projects to the working memory field, forming
a second peak of activation. This one, however, will remain active after the input is gone
through stronger recurrent local excitation. When the same input is presented again, it will
not be able to form a peak in the perceptual field since the field at that location is being
strongly inhibited by the working memory peak (through the inhibitory layer). Thus, only
new inputs can form peaks of activation in the perceptual field. Using this information,
the model identifies the presence of an input that is different from the working memory
prediction, that is, it signals mismatch by excess.

Engel and Wang (2011) present an original model composed of two types of neurons
which they call match-enhancement and match-suppression neurons. Their circuit is illus-
trated in Fig. 1.2. Both types of neurons receive perceptual bottom-up input, inhibit each
other (all to all), implementing a winner take all where one of the populations will tend
to win, and self-excite, although the self-excitation in the match-enhancement neurons is
weaker. Match-enhancement neurons, however, also receive top-down input from the refer-
ence pattern. When the bottom-up and top-down inputs match, match-enhancement neurons
will receive more input and dominate over match-suppression neurons. However, when the
inputs do not match, match-suppression neurons receiving the bottom-up input will win
the competition simply because of their stronger self-excitation. Thus, match-enhancement
neurons signal the match condition whereas match-suppression neurons indicate mismatch
by excess.
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Fig. 1.2 Circuit mechanism composed of match-enhancement (ME) and match-suppression
(MS) neurons, adapted from Engel and Wang (2011), Fig. 3.

Haikonen (2014) proposes a simple model where three conditions are detected, which
he calls match, mismatch and novelty. The match condition is the result of performing the
operation AND(input vector, feedback vector); mismatch corresponds to AND(NOT(input
vector), feedback vector); and novelty results from AND(input vector, NOT(feedback vector)).
Haikonen’s mismatch signal is what in this thesis is called mismatch by deficit and his novelty
signal is considered mismatch by excess. We prefer this choice of words since a mismatch
by deficit can also be considered to be a novelty.

Notably, Haikonen’s model detects both types of mismatch whereas the rest of the models
reviewed focus only on mismatch by excess. However, one disadvantage of this model is
that it requires both the input and reference patterns to be explicitly represented in order for
them to be compared element by element using his proposed boolean logic. This means that
more memory resources are needed in order to hold both patterns and that the computations
become more complex, since the duplicity has to be managed and also some associative
mechanism is needed in order to reproduce from memory the model patterns.

Regarding the match signals present in these models, we consider them secondary to
mismatch signals. As suggested at the beginning, mismatch signals are very useful for
detecting new and unexpected elements in order to allocate more processing resources to
them. In contrast, the use of match signals seems to be much more limited and in many cases,
detecting a match condition can be equivalent to detecting the absence of mismatch signals.
Therefore, in this work we will focus exclusively on the latter.

1.1.4 Mismatch and Learning

As mentioned earlier, mismatches expose errors in our model of the world that often need to
be corrected by means of learning, suggesting a tight link between these two phenomena.
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Most of the early research on learning was performed in the context of animal condition-
ing, and in particular classical conditioning. Classical conditioning refers to the associative
process by which an initially neutral stimulus, the (to-be) conditioned stimulus (CS), becomes
associated with a naturally positive or aversive stimulus, the unconditioned stimulus (US),
such that it starts to produce the same response as the US.

A prominent model of classical conditioning is the Rescorla-Wagner Model (Rescorla
and Wagner (1972), reviewed in Miller et al. (1995)). The model famously succeeded in
explaining the blocking effect. This is the observation that conditioning a response to stimulus
X after AX → US pairings is impaired if A alone had previously been paired with the US. In
essence, the model states that learning is proportional to the error in the prediction of the US,
therefore, when the US is already predicted by a previously conditioned CS, conditioning of
new CSs will be hindered. The model is formalized by the following equations indicating the
change in associative strength (V ) of a CS, X , after a pairing with US1 on trial n+1:

∆V n+1
X = αX β1(λ1 −V n

total)

V n+1
X =V n

X +∆V n+1
X

(1.1)

where αX is the associability of CS X (range 0 to 1 and related to the intensity of the CS),
β1 is the associability of US1 (range 0 to 1 and related to the intensity of the US), λ1 is the
maximum associative strength that US1 can support, and V n

total is the sum of the associative
strengths of all CSs (including X) that are present on trial n+1.

Learning is thus proportional to the surprise or prediction error term, (λ1 −V n
total). In the

model by Pearce and Hall (1980), this error term also appears, although it is considered to
represent the associability of the CS.

Sutton and Barto (1981) expanded on this type of model, essentially converting the
Rescorla-Wagner model into a continuous time version and adding eligibility traces. Later,
they developed the Temporal-Difference (TD) algorithm of reinforcement learning, where
learning is still proportional to errors in the prediction of reward, albeit in a slightly more
complicated way. They relate this model back to classical conditioning in Sutton and Barto
(1990). Their model has also been related to the activity of dopaminergic neurons, as
reviewed in Glimcher (2011).

Given the rewarding or aversive nature of the stimuli used in animal conditioning experi-
ments, it is not surprising that their results and models have often been seen through the lens
of reinforcement learning. It seems plausible, however, that the dependency on prediction
errors that these models postulate relates to learning in a more general sense; the rewarding
or aversive nature of the stimuli in the experiments being simply needed to make the animals
care about learning the associations. As already mentioned, in the framework of predictive
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coding, weight updates are proportional to the activity of the pre- and post-synaptic neurons,
with the latter representing prediction errors. In the mismatch detection circuit presented in
the next chapter, learning will also be proportional to the mismatch signals.

1.2 Spatial Cognition and Navigation

Now we switch to the topic of spatial cognition. This was the initial objective of the thesis
before the mismatch detection circuit was conceived. However, navigation is a case in which
mismatch signals are very common. In fact, many of them are triggered by changes in our
environment that we detect as we navigate through it. Thus, both subjects meet and a model
for navigation based on the mismatch detection circuit will be proposed. This model will
serve as a practical application of the circuit that will both stimulate its development and
demonstrate its capabilities, while, of course, also serving to explore the very challenging
topic of spatial cognition.

1.2.1 Spatial Cognition in the Brain

The ability to learn a representation of space and use it for navigation is with no doubt
fundamental to any advanced creature. The last four decades have seen substantial progress
in our understanding of the neural mechanisms responsible for spatial cognition. In particular,
a number of cell types coding for different aspects of navigation have been found in the
hippocampal formation. These findings are summarized next, and are extensively reviewed
in Moser et al. (2008) and Hartley et al. (2014). The data that supports them comes from in
vivo extracellular unit recordings in freely behaving animals, mainly rodents.

The experimental study of spatial representations in the brain was initiated by the dis-
covery of place cells by O’Keefe and Dostrovsky (1971). These are neurons that present
increased firing rates when the animal is at a specific location, referred to as the neuron’s
’place field’. The firing rate is normally insensitive to the animal’s direction. Place cells
recorded at dorsal sites tend to have smaller place fields while those recorded at ventral sites
are more broadly tuned. Place cells are not topographically organized and the same cells
can participate in the representation of different environments occupying different positions
in each of them. However, O’Keefe and Burgess (1996) reported that the location most
place cells’ fields across several boxes of different magnitudes appeared to be set in relation
to the distances or proportions of distances to the box walls along the box axes directions.
Besides geometric information, place cells are also sensitive to variables such as colors or
odors (Anderson and Jeffery, 2003) and are more commonly found close to behaviorally
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relevant landmarks, and close to the walls of the recording chambers, particularly if they
have orienting cues (Hetherington and Shapiro, 1997).

An interesting property of these cells is the phenomenon known as phase precession.
Place cells will fire at different times relative to the ongoing theta oscillation as the animal
progresses through the cells’ place field. Thus, at a given point if time, if the animal is exiting
place cell X’s place field, in the middle of Y’s and entering Z’s, X will fire at late phase, Y
will do so at an intermediate phase and Z at an early one.

Another important cell type found in the navigation network are head direction cells,
described by Taube et al. (1990). These are cells that fire as a function of the animal’s head
direction in the horizontal plane, independent of the animal’s behavior, location, or trunk
position. The firing rate of each cell is maximal for a single direction and decreases linearly
with angular deviation from it. Different cells seem to be uniformly distributed over all
possible directions. Their firing patterns are anchored to cues in the environment and can
be made to rotate in unison when the orienting cues are rotated, also affecting the position
of place cells. Recently, bidirectional head direction cells have been found that display two
peaks separated by approximately 180º (Taube, 2017).

Grid cells (Hafting et al., 2005) display multiple firing fields which tessellate the environ-
ment forming a triangular pattern. Different grid cell groups will present patterns of different
scale, orientation and spatial phase. Like head direction cells, the relative firing pattern
of grid cells to one another is held constant across environments and is also anchored to
landmarks, although it can continue for some time in the dark. Their function and formation
is not well understood, but they are believed to be involved in path-integration, that is, the
use of self-motion signals to estimate traveled distances and directions. Kraus et al. (2015)
provides evidence for this from an experiment where rats run in a treadmill. They report that
during running in place, grid cells signaled a non-linear, often multi-peaked representation of
time or distance traveled, or a combination of both.

The dependency of place cells on boundaries suggested that these would also be repre-
sented in the brain. Indeed, boundary cells have been found that fire at short distances from
the edges of the environment, for example, whenever a barrier is found at approximately 5cm
to the south of the animal.

Kropff et al. (2015) have also reported speed cells characterized by a context-invariant,
positive and linear response to running speed.

It is worth noticing that many of the spatial cell types show complex responses to
combinations of locational, directional and sensory information. Qualitative reports of these
cell’s responses highlight this fact, for example, in O’Keefe and Dostrovsky (1971): "[the
neuron] had no spontaneous activity and only fired when the rat was pointing in the directions
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marked by A or B and was simultaneously lightly but firmly restrained by a hand placed
over its back with thumb and index finger on its shoulder and upper arm. Both the particular
orientation and tactile stimulus were necessary.". This speaks of the complexity of the system
and suggests that results presented should be taken with caution.

The activity of the cell types described above is often interpreted as evidence that the
hippocampal formation supports a systematic, cohesive and allocentric representation of
space known as the cognitive map (O’Keefe and Nadel, 1978). According to this view, as
animals move through their environment, they maintain and update a representation of their
own allocentric position and orientation within a map, from which they compute the current
egocentric distance and direction to goals. Thus, mammalian navigation would resemble the
processes that humans use when navigating by means of an actual map.

Eichenbaum et al. (1999) challenge this view by noting that there is no evidence of such
a systematic representation of spatial loci bound together within a unified frame of reference.
As noted earlier, place cells do not seem to sample space uniformly, being more common
next to landmarks and boundaries. In addition, different place cells can encode locations
relative to different frames of reference simultaneously, for example, relative to the fixed
environment and to task-relevant, mobile objects (Gothard et al., 1996). Thus, instead of
encoding a systematic cognitive map, Eichembaum et al. propose that the hippocampus acts
as a general memory space where events get linked into sequences, in agreement with the
views that regard the hippocampus as crucial for episodic memory in humans. Place cells
would simply correspond to the nodes of a particular type of episodic memory.

In agreement with this, Aronov et al. (2017) propose that the hippocampal formation
serves as a general mechanism for encoding continuous, task-relevant variables. They
performed an experiment in which they trained rats to manipulate sounds along the frequency
axis and found that hippocampal and entorhinal neurons represented the entire behavioral task,
including activity that formed discrete firing fields at particular frequencies. Interestingly,
they showed that the neurons modulated by their task overlapped with neurons that acted as
place and grid cells in a foraging task.

Wang and Spelke (2000) also challenge the idea of a cohesive allocentric map and propose
instead that mammal navigation may be closer to that of insects. Collett et al. (1998) have
described how desert ants navigate through the use of a global ’homing’ vector that always
points to the direction of their nest and local vectors between landmarks. Mammals are also
capable of extracting these vector representations out of path integration, and humans can
combine several of these vector representations to find novel shortcuts, as reviewed in Etienne
and Jeffery (2004). It seems plausible, therefore, that humans and other mammals represent
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space not as a cohesive map, but as a series of linked vectors indicating the distances and
directions between landmarks.

Warren et al. (2017) defend a very similar idea, arguing that human’s spatial representation
is best understood as a ’labeled graph’ where nodes represent landmarks and contain local
information about path lengths and junction angles to neighboring landmarks without the
nodes being embedded in globally coherent reference system. They provide evidence for
this from a virtual reality experiment where they introduce wormholes. Klauss et al. (2015)
also provide strong evidence for this hypothesis in another virtual reality experiment where
participants learn to navigate through ’impossible worlds’ with severe violations of euclidean
geometry. Two examples of such worlds are shown in Fig. 1.3. When participants had to
reproduce the learned patterns by walking "blindly", no angular distortions where observed,
meaning that the spatial representations that they had learned were globally incoherent.
Notably, the participants did not even realize that violations of geometry were present.

Fig. 1.3 Impossible triangle and impossible square used in the experiment by Klauss et al.
(2015). Dotted lines represent topological continuity that can not be displayed.

Finally, Foo et al. (2005) and Poucet et al. (2013) provide experimental evidence for the
high reliance of humans and rats respectively on landmarks for navigation, which relaxes the
demands on metrically accurate representations of space.

Thus, the observations in animals and humans seem to favor the existence of graph-like
representations of space. This is not surprising, since this kind of representation offers several
advantages. First, it reduces the complexity of the system by sidestepping the problem of
maintaining globally coherent maps. Second, it forms more compact representations since
it only encodes relevant landmarks and not empty space. Finally, it facilitates navigation
by directly providing the information that is necessary for going from one place to another,
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whereas additional mechanisms would be required in order to extract this information from a
Cartesian map.

1.2.2 Spatial Cognition and Object Recognition

Further support for a distributed, graph-like representation of space may come from recog-
nizing the similarity between places and objects. Essentially, both places and objects are
arrangements of features in space and often, the boundary between them is not clear (think,
for example, of a boat, a bed, or the Eiffel Tower). In many cases, places and objects can be
recognized based on vision in apparently the same way. Furthermore, both the recognition of
places and objects often involves a concatenation of movements and sensory impressions; in
the case of objects, the movements correspond to saccadic eye movements, whereas for large
places, locomotive movements are also required.

The advantage of looking at spatial cognition through the lens of object recognition is that
the latter seems to be more mature as a field, specially in terms of developing neurally inspired
artificial systems. After several decades of trying to model vision, what can be recognized
easily is that standard neural network approaches to object recognition have trouble with
the recognition of objects invariant to translation, scale and rotation. In the popular deep
convolutional neural networks (Lecun et al., 1998), translation and scale invariance are solved
by repeating weight kernels at different positions and scales, whereas rotation invariance
requires training the network with rotated samples. While these solutions provide good
results, they are computationally expensive and the weight sharing scheme that they employ
does not seem to be biologically plausible.

The solution that suggests itself is equivalent to the one proposed before for the case of
places: objects are encoded in terms of a set of features and the relative distances and angles
between them. Thus, when recognizing an object, its translation, scale and rotation could
be estimated and then used to systematically correct the extracted distances and angles so
that a comparison with the object’s memorized representation can be made. This systematic
correction would amount to additions and multiplications. Saccadic eye movements, which
are a problem for other models of vision would in fact be helpful here, since they could
be used to obtain the distances and angles between the elements of the pattern. Otherwise,
these distances and angles could be calculated by some internal mechanism. If the angles
are specified as an allowed range of values, instead of a single value, this model would also
easily account for the recognition of objects with flexible parts, like joints.

This type of model has been proposed by Noton (1970), who suggested that patterns are
encoded in feature networks like the one illustrated in Fig. 1.4. The feature network would
be composed of the features of the pattern and the attention shifts required to pass from one
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feature to another. The model has the further advantage that memorizing a pattern becomes
closely analogous to memorizing and repeating a conventional sequence of behaviors, each
being an alternating sequence of sensory and motor activities.

Fig. 1.4 Possible feature network for a house-pattern, following the model proposed by Noton
(1970).

Rybak et al. (1998) build a similar model in which patterns are stored in terms of relative
distances and angles between features. However, in contrast to Noton’s proposal, where
angles are all relative to a common reference frame, Rybak et al. use feature-based reference
frames that are aligned with the features’ gradient of brightness. Their model performed well
in recognizing translated, scaled, rotated and partly occluded objects.

Zetzsche et al. (2008) have proposed a similar model, where patterns are encoded in
terms of ’sensorimotor features’, composed of the triple (si−1,mi−1,si), that is, origin sensory
feature, motor action and final sensory feature. Interestingly, they use the same scheme for
controlling saccadic eye movements and performing object recognition (the micro-scale)
and for controlling body movements and performing place recognition (macro-scale). The
movements of the body are defined in terms of the initial angle that has to be turned from
the starting view to the next place, the distance traveled, and the angle that orients the agent
towards the target view. This is shown in Fig. 1.5. They integrate both systems in a simulated
robot and test it in a large set of virtual rooms.

To our knowledge, Zetzsche et al. are the only ones to have applied a strategy based on
relative positions to both object and place recognition.
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Fig. 1.5 Sensorimotor feature, adapted from Zetzsche et al. (2008) Fig. 3.

1.2.3 Spatial Cognition in Artificial Systems

Mobile robots face the same problems as animals, needing to learn a representation of space
that they can then use for navigation. In robotics, this is known as the problem of simultaneous
localization and mapping (SLAM) and is a very active area of research. Specifically, the
problem is that of acquiring a spatial map of an environment while simultaneously localizing
the robot relative to this model. Mathematically, it amounts to calculating the posterior
probability, p(xt ,m | ZT ,UT ), of the position of the robot, xt , and the map, m, given the
history of sensory observations, ZT , and of odometric information, UT .

Despite substantial progress in the field, robust mapping of unstructured, dynamic, and
large-scale environments in an online fashion remains largely an open research problem. The
majority of SLAM algorithms can be divided into three main families, reviewed in Stachniss
et al. (2016). They are based, respectively, on extended Kalman filters, particle filters and
graph-based optimization. These models will not be discussed here since they bear little
relation to biological navigation. However, it is worth noticing that the challenges faced by
these algorithms stem primarily from their commitment to producing metrically accurate
Cartesian representations of space out of noisy sensory and self-motion estimates. As it has
been suggested above, this may not be necessary, and the apparent difficulty of doing so
supports the appeal of distributed graph-like representations.

1.2.4 Spatial Cognition in Biologically Inspired Systems

In this section we introduce a few biologically inspired navigation systems, sampling from a
broad range of schemes that highlights the lack of consensus that exists in the field.



1.2 Spatial Cognition and Navigation 15

We start with a recent proposal made by Kanitscheider and Fiete (2016). They describe
a neural model that self-localizes in polygonal environments based only on touch-based
information upon contact with the boundaries. The system is very simple, consisting of an
input layer, a recurrent layer and an output layer. The input layer encodes noisy self-motion
cues like velocity and head direction change, as well as noisy boundary-contact information
like relative angle and distance to boundary. The recurrent layer is comprised of 256 Long
Short-Term Memory units (which corresponds to 512 dynamical units). The output layer
performs a linear readout of the recurrent units providing the estimated location coordinates.
The network is trained using a form of stochastic gradient descent.

The network can be trained to localize in 100 environments and it is reported to perform
as well as a particle filter with 104 particles. Some hidden units exhibit stable place fields rem-
iniscent of those found in the hippocampus. More strikingly, the network can localize in new
environments without learning, suggesting that it can build and use dynamic representations
of the environment based on a set of fixed weights. It is not clear that the problem solved by
the network is the same as that being solved by animal brains, and it is definitely not clear
that the solutions are similar, since arguably we create enduring representations of space
whereas this network seems to rely to some extent on temporary dynamic representations.
The results are interesting in any case.

A very different approach is followed by Conradt (2008). He developed a system which
decomposes space into a distributed graphical network of behaviorally significant places.
Each place is represented by a "place agent" that maintains the spatial and behavioral
knowledge relevant for navigation in that place. Place agents know of their neighbors and
how to reach them (distances and angles) relative to their egocentric reference frames. The
collection of such place agents does not represent space in any coherent global structure. The
system learned to navigate a crowded 60x23m space, creating about 150 place agents. The
model is inspired by biological computation and seems amenable to neural implementation
although that implementation was not carried out.

Moving towards systems that seek stronger biological fidelity, we introduce a family
of neurally inspired navigation systems that employ continuous attractor networks. An
early exponent of this is Samsonovich and McNaughton (1997). A more recent model is
"RatSLAM", proposed by Milford and Wyeth (2009). Continuous attractors arise out of
networks with local excitatory connectivity and broader or general inhibition, thus supporting
local peaks of activation that can be easily moved. They can thus be used for representing
a continuously varying position in 2D space (x and y coordinates), or, in RatSLAM, in a
3D space that also includes heading direction. As activity shifts in this space representation,
neurons get associated to other neurons representing sensory input. On the next visit to
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the place, sensory neurons will inject activity in the corresponding (previously associated)
neurons representing that place, thus correcting for small errors accumulated from path
integration. However, it is not clear that this system can perform properly when large
errors accumulate. In RatSLAM, the authors end up introducing an "experience map"
that also receives odometric and visual information and seems suspiciously close doing
everything independent of the neural system. This family of models thus faces the problems
of committing to Cartesian representations of space.

The last model we introduce is that by Cuperlier et al. (2007). They propose a model
which includes place cells and transition cells. Place cells are activated by a visual system.
A specialized population also encodes the last place visited. Transition cells then link past
and current places to the motor commands required to go from one to the other. These
motor commands are defined in terms of the distance and direction (with the use of a
compass) traveled. At the same time, a graph-like cognitive map is built where the nodes
are the transitions, and the edges indicate the frequency with which different transitions are
linked. For generating goal oriented behavior, motivation is fed into the cognitive map and
diffuses through the graph. At the same time, the currently active place predicts the possible
transitions and the combination of both things triggers the next motor command.

The model introduced in this thesis will be most similar to those of Conradt and Cuperlier
et al., where space will be explicitly modeled in terms of relative distances and directions
between relevant places.



Chapter 2

Models

2.1 Mismatch Detection Neural Circuit

In the first part of the introduction we set the task of finding a neural implementation of
mismatch detection. We proposed that mismatches can be of two types: mismatch by excess,
when there are elements in the world not predicted or justified by the model; and mismatch
by deficit, when there are elements in the model that are found to be missing in the world.
Here, we provide qualitative and quantitative descriptions of a novel neural circuit that can
account for these two types of mismatches.

2.1.1 Qualitative Overview

The circuit model that we propose is shown in Fig. 2.1 in its most basic form. It is composed
of neurons whose activation is described by a real value and that output values in the range
[0,1]. "Head" neurons, depicted in blue, signal the presence of some feature or concept
(concepts are seen as higher-level features or vice versa), typically in an all-or-none fashion as
has been reported by Quiroga et al. (2008). In the figure, the "head" neurons represent features
A, B, C and Y, which form a pattern. That is, when features A, B and C are experienced,
feature Y is also typically experienced. The neurons depicted in orange and green belong to
the circuit motif responsible for feature Y. This circuit motif will be repeated for all features,
but for clarity, only that corresponding to Y is shown here. Orange "should-not" neurons
receive excitatory input from the "head" through a connection of weight 1, and receive
inhibitory input from the rest of "head" neurons that compose the pattern. This inhibitory
input adds to -1. When all the features of the pattern are active, excitatory and inhibitory
inputs at the "should-not" neuron cancel each other out and the neuron outputs 0. When
features A, B and C are present but not Y, the neuron is driven to a negative value and also
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outputs 0. Only when feature Y is active but the rest of the features of the pattern are not,
the "should-not" neuron will get activated with a value of 1. Thus, the activation of this
neuron means that feature Y is active but it "should not" be (hence the name), given that no
currently active pattern justifies its presence, that is, it signals mismatch by excess. Green
"should" neurons play the complementary role. They receive inhibitory input from the head
neuron and excitatory input from the head neurons of the rest of the pattern. They become
active only when features A, B and C are present but not Y. The neuron therefore signals that
feature Y is not active but "should" be, given that the rest of the pattern is present (mismatch
by deficit).

head neurons

should-not neurons

should neurons

𝐴 𝐵 𝐶 𝑌

∑𝑤𝑖 = +1

∑𝑤𝑖 = −1
−1

+1

Fig. 2.1 Basic mismatch detection neural circuit. "Head" neurons signal the presence of
features A, B, C and Y, which form a pattern. The "should-not" neuron corresponding to
feature Y signals that Y is active but "should not" be, whereas its "should" neuron indicates
that Y is not active but "should" be.

The connections from a "head" neuron to its "should-not" and "should" neurons, depicted
in thicker gray lines are fixed and stereotypical for the circuit motif. The connections from
other "head" neurons, depicted in thinner blue lines, are the ones that encode the pattern and
will be learned by a mechanism which we address later.

What has been described forms the basis of the model, however, some elements need to be
added. So far, each feature or concept has only one pair of "should" and "should not" neurons
(henceforth referred to as "s-pair"). However, features or concepts should be able to receive
several independent sources of information coming from different stages in the hierarchy
(e.g. bottom-up, top-down or lateral connections) or from different sensory modalities. Each
source of information should be capable of eliciting its own "should" and "should-not"
signals. For example, we might experience something that tastes like salt, and thus activates
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the concept neuron for salt, but does not look like it, eliciting a "should-not" signal for salt in
the visual but not in the taste domain. Therefore, we expand the circuit to include several
s-pairs per concept, where each s-pair interacts with a different source of information. This
is illustrated in Fig. 2.2. If some source of information is not available, for example, if you
are looking at salt but not tasting it, the s-pair corresponding to the unavailable source of
information should be silenced, otherwise those neurons may incorrectly signal that the
concept is active but should not be.

If a source of information is very reliable in indicating the presence of some feature, and
it is signaling (through the activation of the corresponding "should" neuron) that the feature
is not active but should be, then it would make sense that the system activates the feature.
Similarly, if it is indicating that the feature is active but should not be, the feature should
deactivate. This is what we see in the upward green and orange connections in the figure.
Another source of information that is less reliable will do the same but with smaller weights,
represented by dotted lines. Once the head neuron has been activated by some "should"
neuron, it will remain active through self-excitation until it is inhibited by some "should-not"
neuron. Thus, "should" and "should-not" neurons drive the "head" neurons and the basic
mode of operation of the network is fully driven by these three types of neurons arranged in
the stereotypical circuit motif, or microcircuit.

… … ……

Fig. 2.2 Example of a complete mismatch detection neural circuit. The microcircuit in
the center contains two pairs of "should" and "should-not" neurons to interact with two
streams of information. The stream of information in the right is less reliable and thus, the
mismatch neurons that receive that information drive the head less strongly (dotted lines).
The information is coming from more microcircuits of the same type, and typically there will
be reciprocal connections.
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The hypothesis that is entertained in this thesis is that something like the proposed circuit
could be the standard form of operation throughout much of the brain, in the same way that
the predictive coding circuit is claimed to be by its proponents.

The cross-connections between microcircuits (depicted in blue) will be learned through
a type of Hebbian rule. The basic idea is simple. The weight from a head neuron, Hi,
to a "should" or "should-not" neuron of a different microcircuit, S j, will be modified in
proportion to the activation level of the "head" neuron and the negative value of the "should"
or "should-not" neuron:

∆wHi→S j ∝ Hi · (−S j) (2.1)

The negative value is needed since we want the weights to take values equal but opposite to
those of the fixed connections from the microcircuit’s "head".

Let us walk through an example for weights getting learned onto a "should-not" neuron.
Before learning, the "should-not" neuron only receives the excitatory input from its "head"
neuron, thus, when the "head" neuron gets activated, the "should-not" neuron will do so
too, signaling mismatch by excess (no currently active pattern justifies the presence of the
feature). If there are other head neurons active at the same time, according to the learning
rule, negative (inhibitory) connections will grow until they exactly cancel out the excitatory
input and the "should-not" neuron reaches a value of zero. If, for some reason, the weights
would grow too negative, the "should-not" neuron would go negative and the weights would
increase until a balance is reached again. Thus, the learning rule is self-normalizing.

One last element needs to be introduced. Within the same stream of information, there
might be different input combinations that need to be associated to the same concept. For
example, both "a" and "A" need to trigger the same high-level representation of the letter
through its s-pair corresponding to the visual domain. However, as the circuit has been
presented, there is only one "should" and "should-not" neuron per s-pair. Thus, the attempt to
register these two patterns would produce a linear superposition of them that could respond
incorrectly to stimuli that are neither "a" nor "A" but a combination of both. The obvious
solution would be to use different neurons to register each pattern, but this runs into the
problem that then, most of the time, most "should-not" neurons would inconveniently be
active. In the example, when presented with "a", the "should-not" neuron that recognizes
"A" would activate and vice versa. We might postulate that if one "should-not" neuron is
silent (meaning that the concept is being justified by one pattern), the rest should also remain
silent. However, a more elegant solution comes from introducing dendritic nonlinearities and
having each dendrite respond to a different pattern. This is illustrated in Fig. 2.3.

The introduction of dendritic nonlinearities is inspired by findings in biology. Polsky
et al. (2004) found that, in thin dendrites of rat neocortical pyramidal neurons, nearby inputs
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Fig. 2.3 Dendritic nonlinearities are used to increase the discriminatory capacity of "should"
and "should-not" neurons. Here, "should" neuron SY responds to patterns (A,B) and (B,C)
but not to (A,C), since this combination, which is not one of the learned patterns, only causes
subthreshold activation in the dendrites.

on the same branch summed sigmoidally, whereas widely separated inputs or inputs to
different branches summed linearly. This provided the first experimental support for a two-
layer neural network model of the pyramidal neuron. The active properties of neocortical
pyramidal dendrites are reviewed in Major et al. (2013). The principal dendritic nonlinearity
is supported by NMDA spikes, which have been found in all classes of thin dendrites of
neocortical excitatory neurons and in all neocortical areas and layers examined, and probably
also occur in hippocampal apical tufts.

In addition to the electrophysiological findings, Makino and Malinow (2011) report that
sensory experience in mice preferentially produced clustered synaptic potentiation onto
nearby dendritic synapses, supporting the hypothesis that dendrites are used by the brain for
independently binding different input combinations.

Several models have been proposed that make use of these dendritic nonlinearities (Mel
(1991), Wu and Mel (2009), Legenstein and Maass (2011), Urbanczik and Senn (2015)).
Strictly speaking, dendritic nonlinearities seem to operate on a sliding window of integration
across dendritic branches but for simplicity, we will assume that dendrites are the fundamental
unit of integration.

A further advantage of introducing dendritic nonlinearities in our model concerns learning.
According to the learning rule, when inputs arrive to the "should" and "should-not" neurons
of a microcircuit in the absence of activity in its head neuron, the active connections will
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get weakened. This makes sense, since the circuit has to be able to learn that certain stimuli
no longer predict others. However, without dendritic nonlinearities, it would run into the
following problem. Different concepts will typically respond to combinations of features
that overlap partially, thus, when presented with the features corresponding to one concept,
the "should" and "should-not" neurons of other concepts will also receive partial stimulation.
In the absence of activity in their "head" neurons, this partial stimulation would weaken the
connections that cause it. For instance, every time a yellow lemon is seen, the connection
from yellow to banana would be reduced. I explored a solution involving sliding thresholds
for learning, but dendritic non-linearities provide a much more elegant solution: partial
combinations of features below some threshold simply do not cause activation in the "should"
or "should-not" neurons and do not trigger learning.

The introduction of dendrites, however, makes the learning rule more complicated since
now some additional mechanisms need to be introduced to ensure the automatic clustering of
inputs onto different dendrites. This will be discussed in the next section.

Thus far, "should" and "should-not" neurons signal mismatches between the world and
the currently active model of it. However, in an s-pair that does not drive its head neuron,
or does it very weakly, the "should" and "should-not" neurons could also be used for the
production of behavior. In this case, these neurons would signal the mismatch between some
motivation and the current state of affairs. They could then be used to generate actions until
the desired state is achieved, thus acting as a negative feedback control system. Furthermore,
they could be linked in a hierarchy, where the motivational "should" or "should-not" signals
of some higher-level state propagate to those of a lower-level state that is required for the
activation of the first. For example, the desire to obtain hot water (its motivational "should"
neuron) could propagate to the desire of having the tap turned to the left, whereas the desire
to reduce the temperature (the motivational "should-not" neuron of the "hot-water" circuit)
could be linked to turning the tap in the opposite direction. This type of arrangement is
shown in Fig. 2.4 for the activity of a motivational "should" neuron being propagated through
two levels until it is finally used to generate action.
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Fig. 2.4 The mismatch detection circuit used for the production of behavior. The motivation
for a higher-level state propagates to that of a lower-level state that controls the motor systems,
closing a negative feedback control loop through the world and sensory systems.
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2.1.2 Detailed Description

This section contains a detailed description of the circuit including the equations that govern
its behavior. The equations are for a single microcircuit composed of one "head" neuron and
one "should" and "should-not" neurons, but the modifications needed to include several linked
microcircuits or multiple s-pairs are straightforward. The system is modeled in discrete time.

The activation level of the "head" neuron, H, is defined by

∆H =
1

τH
(−H +Hout +wSS−wNN +Hext)

Hout = f (H)

(2.2)

where τH is the time constant; wS and wN are fixed weights from the "should" and "should-
not" neuron respectively, both positive; and Hext is an unmodeled external input. This external
input will be used to activate the neurons for the first time until connections are learned and
the neuron is driven by the s-pair. The activation function of the neuron, f , is the piecewise
linear function plotted in Fig. 2.5.

f (x) =


0 if x ≤ θH,l

x
θH,h−θH,l

− θH,l
θH,h−θH,l

if θH,l < x ≤ θH,h

1 if x > θH,h

(2.3)

Due to the self-excitation of the "head" neuron and the form of its activation function, the
neuron shows a bistable behavior with equilibrium points in 0 and 1. The attraction towards
the high equilibrium point after a threshold has been exceeded can be seen as a restorative
force that ensures that the signal does not disappear after several stages of processing.

The activation of the "should" neuron, S, is defined by the following equations.

∆S =
1
τS
(−S−Hout +

n

∑
i=0

gS(di)+Sext)

Snoisy =−Hout ·U(1−a,1+a)+
n

∑
i=0

gS(di)

Sout = max(0, min(1, S))

(2.4)

where τS is the time constant, which should be smaller than τH to avoid oscillations; Hout is
the output of the head neuron; ∑

n
i=0 gS(di) is the sum of the activation values of the neuron’s n

dendrites, d, after the dendritic nonlinearity, gS; and Sext is an external input that will be used
in some occasions to simulate unmodeled inputs. Snoisy is an instantaneous and noisy version
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Fig. 2.5 Activation function of the "head" neuron with θH,l = 0.5 and θH,h = 0.75, which are
the parameters used in the simulations.

of S that will be backpropagated to the dendrites and act as a learning signal. U(1−a,1+a)
is a uniform noise distribution that draws samples between 1−a and 1+a. The purpose of
this noise term in learning will be explained later. Snoisy has been introduced for convenience,
since the noise is required for learning but it is preferable to have a clean signal in S.

The value of dendrite i is the dot product of an input vector, I, and a weight vector for
that dendrite, wi.

di = I ·wi (2.5)

The dendritic nonlinearity is a piecewise linear function which only saturates from below
and has value of 1 for x = 1.

gS(x) =

0 if x ≤ θd

x
1−θd

− θd
1−θd

if x > θd

(2.6)

Similarly, the behavior of the "should-not", N, is defined by

∆N =
1
τS
(−N +Hout +

n

∑
i=0

gN(di)+Next)

Nnoisy = Hout ·U(1−a,1+a)+
n

∑
i=0

gN(di)

Nout = max(0, min(1, N))

(2.7)
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where the only differences with respect to "should" neurons are in the sign of the input from
the "head" neuron, and in the dendritic activation function, gN , which is the antisymmetric
function of gS (a dendritic nonlinearity for the inhibitory inputs).

Now we will discuss the learning rule. The basic idea was already introduced in the
previous section. The weight update will be proportional to the pre-synaptic neuron and
the negative value of the post-synaptic "should" or "should-not" neuron. However, we
need to solve two problems. First, some mechanism has to be introduced that ensures that
different input combinations cluster onto different dendrites. We want the mechanism to be
biologically plausible, so synapses will only have access to local information and will not
know directly the value of other synapses. Second, we would like the learning rule to allow
for the integration of new elements into a learned pattern. For example, the system may have
learned that features A and B predict feature Y, and thus connections with a weight of 0.5
will have been established from the "head" neurons of A and B to the "should" neuron of
Y. If now the pattern changes to A, B, C and Y, the system should learn this and modify the
weights so that now A, B and C contribute 1/3. However, as the rule stands right now, this
will not happen since the weight change is proportional to the "should" neuron, and this is
already 0 after the first association is learned.

Let us first discuss this second problem. If a connection is to be established from C to
the "should" neuron of Y, this neuron should have a value different from 0, at least some
of the time. This is where the noise term in Snoisy comes in. Even if the connections from
A and B add up to cancel on average the fixed connection from the microcircuit’s head,
there will be moments in time where its value will become negative, which is when new
connections can grow. But this is not enough; new (and old) connections will grow by a
certain small amount when the noise brings S below 0, but they will subsequently decrease by
the same amount on average when the noise makes S go above 0. We need a mechanism that
breaks this symmetry and allows new connections to grow on average. A solution could be
to make smaller synapses increase faster and/or larger synapses decrease faster. Thus, when
the noise makes the connections grow, new connections (which are initially smaller) will
grow more than the old ones (which are larger); and when the noise makes them decrease,
old connections will decrease by a larger amount, eventually leading to a homogenization
of the weights. The problem with this approach is that the different rates for increasing
and decreasing the weights, added to the uniform noise distribution will make the weights
stabilize around a value that is not exactly the desired one and that does not make the value of
S equal to 0 on average. What we would like is that smaller weights increase faster and larger
weights decrease faster only when the weights have different value, but otherwise have equal
increase and decrease rates so that they stabilize around the correct value. The way in which
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we achieve this is by dividing the weight update process into two stages. First, weights get
tagged with a "desired" weight update that is the same for all weights regardless of their size,
and that has the same rate for increases and decreases. Second, a certain "available" weight
update is distributed to the weights according to their "desired" update and a priority score.
It is in this priority score that the asymmetry is introduced by making smaller weights have
priority in capturing the available positive weight updates and larger weights have priority in
capturing the available negative updates. This solves the problem.

Very conveniently, it also provides the basis for solving the dendritic clustering problem.
In essence, we can make synapses at different dendrites compete for a limited amount of
weight update available from the soma in such a way that weights in dendrites with larger
tagged weights have priority in the capture of positive updates and/or weights in dendrites
with smaller tagged weights have priority to capture the negative updates. This will lead to
weights from a particular input pattern clustering onto a single dendrite. However, nothing
would prevent another input combination from clustering onto the same dendrite, thus
rendering the clusters useless. In order to avoid this, we limit the maximum amount of weight
that a dendrite can hold to that corresponding to one cluster. If this quantity is exceeded,
the weights compete with each other based on a measure of fitness. The fitness measure
of weights that have already succeeded in clustering in a dendrite will be high, thus, new
weights from different input combinations will not be able to compete for resources or space
in this dendrite and will cluster in an unoccupied one. This mechanism is not biologically
implausible. Gray et al. (2006) have found that PSD-95, a protein thought to determine the
size and strength of synapses, is retained by individual spines only for short periods of time
(with median retention times in the order of tens of minutes) and is constantly exchanged
between neighboring synapses by diffusion. The authors suggest that spines are competing
for a limited shared pool of PSD-95. Fonseca et al. (2004) also provide experimental evidence
for competitive interactions between synapses in regimes of reduced protein synthesis.

The division between tagging and distribution of weight update will also make it easier
to learn behaviors as was shown in Fig. 2.4. Learning a behavior consists of learning the
association between the motivational s-pair of the desired state and that of a state or action
that when activated brings about the desired state. In order to achieve this, we can allow
tagging to happen constantly and low-pass filter it, thus, in the exploratory phase, tags will
grow for all the actions performed, and then decay exponentially. Only when the desired state
is fulfilled, the capture process is allowed. This way, only the actions that were performed
right before the state came about will get learned, since they are the only ones with sufficiently
large tags at the time. The low-pass filter of the tags could also be used to learn behaviors
where there is a delay between the execution of the action and the fulfillment of the desire.
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This general mechanism that we have just proposed, where weights first get tagged with
a "desired" weight update and then compete for an "available" update was conceived of
out of necessity, and is useful in solving three different problems. Interestingly, it bears a
striking resemblance to what is known in neuroscience as the synaptic tagging and capture
hypothesis (Redondo and Morris, 2011). According to this hypothesis, synapses are first
tagged for potentiation or depression and then capture "plasticity products" that are necessary
for producing enduring changes in synaptic efficacy. In this capture process, cooperative and
competitive interactions can take place between synapses (Sajikumara et al., 2014).

In fact, Govindarajan et al. (2006) have already proposed a biological model for clustered
plasticity that is partly based on the synaptic tagging and capture hypothesis and exploits a
cooperative effect in the capture process.

The last element of the learning rule that needs to be introduced is a "flexibility" variable.
This variable will be used for decreasing the learning rate as the neurons "ages" so that
patterns can get learned very quickly at the beginning and then only modified slowly. This is
very roughly modeled in the circuit and the reset functionality that would be needed if the
neuron gets recruited for a new pattern is not implemented.

With this we can go back to describing the equations. The "age", A, just mentioned will
simply increase every time step that the "head" neuron is active.

∆A = Hout (2.8)

The "flexibility", Φ, will be an exponentially decaying function of the "age", plus a
constant, Φ∞, so that learning never fully stops:

Φ = kΦ · exp(−A/τaging)+Φ∞ (2.9)

where τaging is the aging time constant.
The rest of the equations will focus on the weights onto a "should" neuron, but the case

for "should-not" neurons is equivalent, except for a few trivial sign changes.
The weight fitness, F , corresponding to the weight from input j onto dendrite i, is given

by
∆Fi j = ηtagging ·ηcapture ·Φ ·g(di) · I j (2.10)

where ηtagging and ηcapture are the tagging and capture rates respectively, Φ is the flexibility,
g(di) is the value of the dendrite after the nonlinearity, and I j is the input. The weight fitness
will thus increase every time the input drives the activation of the dendrite above threshold.
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Learning will be blocked for a certain number of time steps when the derivative of the
"should" neuron exceeds a certain threshold. The reason for this will become clear with the
help of simulations in the next chapter. This feature is implemented by means of a "block
count" that gets reseted to an initial value every time the derivative exceeds a threshold, θblock,
and otherwise is decremented by 1. Learning is enabled through a boolean variable, E that is
1 when the "block count" is not positive.

blockCount =

blockCount0 if S(t)−S(t −1)> θblock

blockCount −1 otherwise
(2.11)

E =

1 if blockCount ≤ 0

0 otherwise
(2.12)

The instantaneous value of the update tag ("desired" update) corresponding to the weight
onto dendrite i, and input j is given by

T inst
wi j

= E ·ηtagging ·Φ · (−B(Snoisy,di)) · I j (2.13)

where B is a function that handles the backpropagation of the learning signal, Snoisy, to
the dendrites. In order to understand the need for this function, suppose that a "should"
neuron with two dendrites has learned input patterns (A,B) and (B,C,D), on each of the
dendrites. After learning, when presented with a pattern, say, (A,B), due to the noise in Snoisy,
the weights will go up and down slightly. The problem is that the weight from B onto the
dendrite that recognizes (B,C,D) will also go up and down, but since there is less amount of
weight tag on that dendrite (only that from B), the dendritic clustering rule will make that
weight from B capture preferentially the negative updates, making it decrease on average.
The solution is thus to block backpropagation of the learning signal to dendrites that are
below threshold, when the value of the learning signal is due only to noise.

B(x,d) =

0 if d ≤ θd and x >−ω

x otherwise
(2.14)

where −ω is the largest negative value of Snoisy that can be due to noise alone.
The instantaneous value of the tag is then low-pass filtered. However, we do not want to

filter out the noise, since the noise was introduced with the purpose of allowing new elements
to get integrated into learned patterns. Therefore, we divide the tag into two components, one
to keep track and low-pass filter the positive weight updates, and the other to do the same
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with the negative weight updates. The negative tag has to be clipped if it exceeds the weight,
since otherwise the weight would try to become negative (and it is supposed to be excitatory).
When the only source of input to the instantaneous tag is the noise, the "up" and "down" tags
will have equal values and the equilibrium will be a dynamic one, where weights are tagged
to increase and decrease by the same amount.

T up
wi j

=

α ·T up
wi j +(1−α) ·T inst

wi j
if T inst

wi j
> 0

α ·T up
wi j otherwise

T down
wi j

=


α ·T down

wi j
+(1−α) · (−T inst

wi j
) if T inst

wi j
< 0 and α ·T down

wi j
+(1−α) · (−T inst

wi j
)≤ wi j

wi j if T inst
wi j

< 0 and α ·T down
wi j

+(1−α) · (−T inst
wi j

)> wi j

α ·T down
wi j

otherwise
(2.15)

Now we need to calculate the "available" weight updates. These will be produced by
the soma independently, based on a "soma tag" that is equivalent to the weight tags except
that it does not depend on the values of pre-synaptic neurons and is not modulated by the
backpropagation function.

T inst
soma = E ·ηtagging ·Φ · (−Snoisy) (2.16)

T up
soma =

α ·T up
soma +(1−α) ·T inst

soma if T inst
soma > 0

α ·T up
soma otherwise

T down
soma =

α ·T down
soma +(1−α) ·T inst

soma if T inst
soma < 0

α ·T down
soma otherwise

(2.17)

The "available" increments and decrements of weights that can be captured at a time step
will then simply be the multiplication of the "soma tags" by a parameter that defines the rate
of the capture process.

∆wavailable = ηcapture ·T up
soma

∇wavailable = ηcapture ·T down
soma

(2.18)

Finally, we need the priority scores with which the "available" weight update is distributed.
There will be a priority score for the dendrites, which will produce the dendritic clustering,
and one for the weights, that will ensure the weight homogenization and integration of new
elements. For the dendrites, the priority for capturing positive weight updates is given by
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the sum of the weights onto that dendrite multiplied by their positive tags. The priority for
capturing negative weight updates is the sum of the weights’ negative tags divided by the
weights’ values. A small constant, ε is added to the weights so that the priorities do not
go to 0 or infinity. In addition, the priorities are multiplied by a uniform noise distribution,
Uslow(1−b,1+b), that varies slowly (with a time constant of about half of the time it takes
to learn a pattern). In the simulation this is implemented by drawing a sample every T time
steps. This noise is necessary to break the initial symmetry and allow one dendrite to win the
competition.

Pup
di

=
m

∑
j=0

(T up
wi j

· (wi j + ε)) ·U(1−b,1+b,T )

Pdown
di

=
m

∑
j=0

(
T down

wi j

(wi j + ε)

)
·U(1−b,1+b,T )

(2.19)

The priority for a weight to capture positive updates is given by a negative exponential of
its weight, whereas the priority to capture negative updates is a positive exponential of the
weight.

Pup
wi j

= exp(−kP ·wi j)

Pdown
wi j

= exp(kP ·wi j)
(2.20)

Now the "available" weight update has to be distributed according to the "desired" weight
updates given by the weight tags and the priority scores. This process is not trivial. We
could imagine that it would be enough to multiply the dendrite and weight priorities to get a
global priority of each weight and then simply distribute the weight update proportional to
the priorities. This has two problems. First, the dendrite priorities give advantage to larger
weights, but the weights priorities do the opposite, so multiplying the two priority scores
counteracts their effect. The second problem is that distributing the updates in proportion to
the priorities may assign to a weight more weight update than what it is asking for, effectively
"wasting" this excess of weight update that could have been used by another weight. This
is not just a problem of economy; it actually introduces an error in the average value of the
weights. Thus, the effect of the two priority scores has to be kept independent, and weights
should not be assigned more weight update than what they "desire", but all the weight update
should be distributed if possible.

It seems plausible that this mechanism could be achieved by having the weight update
diffuse in and out of the dendrites with a probability based on the dendrite priority, while
the capture process within the dendrites happens at a faster rate, effectively dissociating the
two effects. Alternatively, the weight update could be shipped to the dendrites based on
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their priorities and total "desired" update in that dendrite, and then be distributed within the
dendrites based on the weight priorities and their "desired" updates. We follow this second
approach and solve it algorithmically. We use the same procedure for distributing the weight
updates to the dendrites first and to the weights later. The algorithm is implemented by the
following Python code:

import numpy as np
def d i s t r i b u t e ( a v a i l a b l e , d e s i r e d , p r i o r i t i e s ) :

a s s i g n e d = np . z e r o s ( d e s i r e d . shape )
whi le ( a v a i l a b l e > 1e−5 and ( d e s i r e d > 1e −5) . any ( ) ) :

p r i o r i t i e s = np . where ( d e s i r e d < 1e−5, 0 , p r i o r i t i e s )
canAss ign = ( a v a i l a b l e * p r i o r i t i e s / np . sum ( p r i o r i t i e s ) )
a s s i g n s = np . minimum ( canAss ign , d e s i r e d )
a s s i g n e d += a s s i g n s
d e s i r e d −= a s s i g n s
a v a i l a b l e −= np . sum ( a s s i g n s )

re turn a s s i g n e d

Finally, if the weights onto a dendrite exceed the amount corresponding to one cluster
(plus a small margin), 1+ ε , a competitive mechanism kicks in. The amount by which the
limit has been exceeded, ∑ j wi j − (1+ ε), will be distributed with negative sign among the
weights. The proportion that will be assigned to each weight is calculated as follows. For
each (non-zero) weight, we calculate a score, λ , by dividing the maximum fitness in the
dendrite by each weight’s fitness.

λi j =
max(Fi)

Fi j
(2.21)

and then distribute subtractively the excess of weight proportional to this:

∆wi j =−
(
∑

j
wi j − (1+ ε)

)
· λi j

∑ j λi j
(2.22)

This finalizes the description of the circuit. Simulation results are shown in Chapter 3.

2.2 Spatial Cognition and Navigation System

In this section a navigation system based on the mismatch detection circuit is presented.
First, we need to define the higher-level architecture of the system. How will space

be represented? We believe that the arguments and experiments presented in the literature
review are sufficiently strong to rule out a Cartesian map. We will thus represent space as a
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series of landmarks and the relative distances and directions between them. Two possibilities
are considered, which are shown in Fig. 2.6.

A

C
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dAB N
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ϕBC

dAB,

ϕAB

B

Fig. 2.6 Two possibilities for representing space, explained below.

In both schemes, the information that links one landmark to the next includes the distance
between them. The difference between the two proposals is in how the directions are handled.
In scheme depicted at the left, the direction which has to be pursued in order to get from
B to C is defined relative to the previous direction, A to B. On the right, all directions are
specified with respect to a local reference frame.

The first proposal agrees with behavioral experiments in humans that expose a lack of
global coherence in our cognitive maps. It is also similar to the vector-based navigation
system of insects. Furthermore, the representation of directions in purely relative terms
relaxes the demands on the path integration system and eliminates the need for loop closure
mechanisms. A final advantage is that the representations learned are very easy to use to
generate behavior; the relative angles directly tell you how much you have to turn to go from
one place to the next.

However, it has two important disadvantages. First, it is at odds with the well established
finding of head direction cells in rodents that signal direction with respect to some local but
coherent reference frame. Second, it does not generalize well. For example, if we now learn
a new path to B, from, say, D, after traveling this path, the system will not know how to go to
C, since it can not apply the relative angle φABC, instead, it will have to learn the new relative
angle φDBC.

The second model does not have these two problems since it includes the local heading
direction, which allows new paths to be followed. For example, C is to the (relative) east of
B, so as long as you are oriented within this reference frame, you will know how to go from
B to C regardless of where you are coming from. Therefore, this is the representation of
space that we will use. However, it should be noted that the two representations are perhaps
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complementary, such that places that are relatively open and/or well explored develop a local
reference frame, whereas those that are less well known or more restrictive in the movements
that they allow, rely on pure relative angles.

We now propose an implementation of this model composed almost exclusively of the
mismatch detection circuit. The system will be capable of learning an environment composed
of series of landmarks identified by their odor. Mismatch signals will be useful both for
detecting changes in the environment and for driving behavior (going to landmarks). The
choice of odors as landmarks is motivated by the fact that odors are local stimuli, which
simplifies the system. The model is shown in Fig. 2.7. It is composed of three groups
of microcircuits, where the microcircuits in one group code for different directions and
distances, in another group code for different places and in the last, code for different odors.

direct motion

places

past places

odours
direction & 

distance

motivations

Fig. 2.7 Navigation system.

The color coding is consistent with the figures shown previously: blue rectangles represent
the population of "head" neurons, orange rectangles represent "should-not" neurons and
green ones, "should" neurons. In the groups that code for directions & distances, and for
odors, each microcircuit contains two s-pairs. This is represented by the two pairs of green
and orange rectangles. In the group that codes for places, each microcircuit has three s-pairs.
The rectangles shown in light green and orange represent s-pairs that do not drive the head
neuron whereas those in dark green and orange do. The rectangle in dark blue is a new
element; it can be regarded as a working memory population of neurons that will code for the
place that was last visited. This is implemented in a straightforward way: the "past places"
neurons copy the activation values of the "place" neurons at certain moments in time and
then maintain these values. How this maintenance actually occurs is not modeled explicitly,
but it could happen through recurrent excitatory connections or by some internal mechanism
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(Egorov et al. (2002), for example, report neurons in the entorhinal cortex that could sustain
different levels of firing frequency in the absence of input).

The "head" neurons of direction & distance and odors will be driven by s-pairs that
receive simulated odometric and sensory input respectively. The "head" neuron of places
will be driven simultaneously by s-pairs receiving metric and odor information. The s-pair
that receives metric information from directions and distances also receives information from
the "past-places" such that it can learn associations of the type: B-past + 5m + East → C.
The non-driving s-pair of the odors receives information from places and will thus signal
mismatches when a certain odor associated to the current place is missing or when an odor
is present that is not justified by the place. Finally, a non-driving s-pair of places receives
motivational input and, together with the "past-places", projects to the non-driving s-pair of
directions & distances. This way, associations of the following form can be learned: B-past +
C-should → (5m, East), which can be used to travel to the place. Specifically, if the current
distance and direction is not the one asked for or supported by where you are coming from
and where you want to go, mismatch signals will appear (e.g. East-should, North-should-not)
that can be used to steer the agent towards its goal.

The last issue that needs to be discussed is how the places will get activated for the first
time, so that connections from the distances, directions and odors can be learned that will
drive the activation of the place in the future. For this, we have introduced a system (very
rough for now) that activates a place’s "head" neuron when no other one is active and there is
an unexplained odor. The neuron that will get recruited to represent this new place will be the
one that has shown the least amount of activity, that is, probably, the least useful neuron for
the system. If, however, there is a place neuron that is partly activated (above some threshold)
when the unexplained odor occurs, the system will fully activate this place neuron. This
will happen when the odor of a place changes. The place neuron will get partly activated
because of the conflicting positive input from the metric s-pair (that tells it that it has arrived
at the place) and negative input from the odor s-pair (that tells it that the place does not have
the correct odor). The system fully activating this neuron means that it is judging that the
place it represents has been reached despite the mismatch in the odor and is thus committing
to having that neuron represent the place. This mechanism bears some resemblance to the
"Adaptive Resonance Theory (ART)" proposed by Carpenter and Grossberg (1988). In ART,
input patterns activate hypothesis in a winner-take-all fashion. If the match between the
input pattern and the pattern predicted by the hypothesis is good enough, learning happens,
allowing for small corrections in the pattern. If, on the contrary, no hypothesis matches the
current input, a previously uncommitted node is selected to represent the new input pattern.

Simulation results for the navigation system are shown in the next chapter.





Chapter 3

Results

3.1 Mismatch Detection Neural Circuit

3.1.1 Basic operation

The circuit’s operation will be first demonstrated with the help of an example where two
different sources of information come into conflict. The example network is illustrated in
Fig. 3.1. A microcircuit that represents the concept of salt contains two s-pairs for receiving
low-level input from taste and visual features respectively. The s-pair that receives taste
information drives the "head" neuron more strongly, accounting for the fact that taste is
a more reliable indicator of the presence of salt. In turn, the "head" neuron of salt sends
projections back to s-pairs of the taste and visual features in order to predict or justify their
presence. The "head" neuron of the taste and visual features is however only driven by
simulated sensory input arriving at a different s-pair.

A simulation of this network is shown in Fig. 3.2. The network contains microcircuits for
representing three taste features, three visual features and the concept of salt. The activation
levels of the neurons are represented in a heat map, where the activation of the "should" and
"should-not" neurons is superimposed to that of the "head" neurons.

First, note how the activation of the taste and visual features is driven by the "should"
and "should-not" neurons in their first s-pair, which receives simulated sensory input (not
shown). When the input corresponding to a feature first arrives, it indicates that the feature
"should" be active but is not, thus eliciting a response in its "should" neuron. Subsequently,
the "should" neuron triggers the activation of its "head" and the mismatch disappears. When
the input is removed, the "should-not" neuron gets activated, since the "head" is active but
"should-not" be. This signal in turn suppresses the activation of the "head" and the mismatch
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… … ……

w = 8 w = 1

“Salt”

Taste features Visual features

Fig. 3.1 Example network illustrating a microcircuit driven by two sources of information.

disappears again. The activation of the s-pair is thus signaling the onset and offset of the
features and could be used to attract attention to them.

The simulation is divided into several stages. In (A), the network learns for the first
time that salt is accompanied by taste feature 1 and visual features 2 and 3. We can see
the activation of the "should-not" neurons until the associations are learned that justify the
presence of those elements. Learning is switched off for the rest of the simulation. In (B),
the network sees something that looks like salt and thus activates the concept. The s-pair of
salt that receives taste features is silenced because nothing is being tasted yet. In (C), the
substance is tasted but the taste feature found is not the one corresponding to salt, thus it
switches-off the concept. The odd taste feature and the visual features are unjustified, with
their "should-not" neurons switched on. The visual features keep indicating that the substance
"should" be salt. In (D) the process happens in reverse; the network tastes something in
the absence of visual stimuli and identifies it as salt. In (E), it sees it and finds the wrong
visual features, however, since taste drives the "head" neuron of salt more strongly, it remains
mostly active. The missing visual features of salt "should" be active; the odd visual feature
"should-not", and according to the visual input, the substance "should-not" be salt.
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Fig. 3.2 Simulation of the network shown in Fig. 3.1. See text for explanations.

3.1.2 Dendritic Clustering and Weight Homogenization

The learning rule ensures that different input combinations will cluster onto separate dendrites.
The simulations will be based on the circuit depicted in Fig. 3.3.

𝐻𝐴

−1

+1

𝑆𝑌

𝑁𝑌

𝐻𝐵 𝐻𝐶 𝐻𝑌

Fig. 3.3 Basic mismatch detection circuit.

The network will be presented with patterns (A,B,Y) and (B,C,Y). Only circuit Y is
learning the associations, and the simulation shows the weights onto two dendrites of its
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"should" neuron (the case for the "should-not" neuron is equivalent). The "should" neuron of
Y, SY , thus has to establish connections from A and B on one dendrite and B and C on the
other. The simulation is shown in Fig. 3.5.
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Fig. 3.4 Dendritic clustering when patterns (A,B,Y) and (B,C,Y) are presented for sufficiently
long intervals. Weights from A and B cluster onto the first dendrite by chance, and weights
from B and C are subsequently forced into the second one.

Weights from A and B cluster by chance on the first dendrite and their measure of fitness
increases as they successfully activate the dendrite above threshold. When pattern (B,C,Y)
is presented next, weights from B and C must grow. The first dendrite is already full, so
weights have to grow at the expense of others, competing based on their fitness. The weight
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from B, which has the same fitness as A, manages to grow slightly, but the weight from C,
with no fitness, can not compete. The second dendrite is partly full, but the weights there do
not have any fitness since they did not manage to drive the dendrite above threshold. Thus,
weights from B and C can easily grow there, expelling the residual weight from A.

At the end of the simulation, it is shown how input combinations (A,B) and (B,C) cause
the activation of the "should" neuron, but not the combination (A,C) which is not one of
the learned patterns and causes only subthreshold activation in each dendrite. The dendrites
thus successfully separate the two patterns. Since learning is still enabled and with a high
learning rate, the presentation of (A,B) and (B,C) without Y causes the network to unlearn
the association. Note, however, that the weights only decrease until they no longer cause
above-threshold activation in the dendrites. As explained earlier, this is necessary so that
the presentation of a pattern does not cause the depression of weights corresponding to
other partially overlapping patterns. This can also be seen in the simulation: when (B,C)
is presented, the weight from B onto the dendrite that recognizes (A,B) is not affected
because B is causing below-threshold activation on the dendrite. This feature also allows
learned patterns to become ineffective in a way that is easy to revert, specially if the dendritic
threshold is high and thus making patterns effective or ineffective amounts to small changes
in the weights.

In the next simulation (Fig. 3.4), the same procedure is shown, but the patterns are
alternating at a higher frequency. Since weights have less time to increase their fitness, they
are not as effective in keeping other weights from growing on the same dendrites and the
initial stage of the clustering is more competitive.

Finally, we use the same configuration to illustrate the mechanism that allows new
elements to be integrated into learned patterns. For this, we present pattern (A,Y), followed
by (A,B,Y) and (A,B,C,Y). The simulation can be seen in Fig. 3.6.

The weights have clustered by chance onto the second dendrite. When the patterns
change to incorporate new elements, the weights are modified slowly to reflect this. The
time scale for the integration of new elements is slower than for learning the associations
for the first time, since it depends entirely on noise. This is in accordance with the behavior
observed in animal conditioning experiments.
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Fig. 3.5 Dendritic clustering when the patterns alternate at a higher frequency.
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Fig. 3.6 Weight homogenization.
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3.1.3 Capturing the Statistics of Associations

The learning rule translates the statistics of the associations into the strength of the weights
that encode them. We show this in an example where two circuits become associated. Circuit
1 will be active some percentage of the time, whereas Circuit 2 (not shown) is always active.
The strength of the connection from Circuit 2 to Circuit 1 will depend on the percentage of
the time that Circuit 1 is active, which is the percentage of the time that Circuit 2 successfully
predicts its presence.

In the first simulation (Fig. 3.7), the Circuit 1 is active half of the time. Thus, the weight
from the second circuit to the first one will converge to a value such that its "should" and
"should-not" neurons have a value of 1/2 when the circuit is inactive or active respectively.
Since the dendritic threshold in the simulation is 0.66, the weight needed for causing an
activation of 1/2 in "should" and "should-not" neurons is 0.83 (halfway through 0.66 and 1).
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Fig. 3.7 The learning rule captures the statistics of the associations. Circuit 2 (not shown)
is active always and successfully predicts the presence of Circuit 1 half of the time, thus,
"should" and "should-not" neurons activate with an average value of 1/2.

In the second simulation (Fig. 3.8), Circuit 1 is active one third of the time. Thus,
when it is not active, its "should" neuron will have a value of 1/3, and when it is active, its
"should-not" neuron will have a value of 2/3.
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Fig. 3.8 Circuit 2 (not shown) is active always and successfully predicts the presence of
Circuit 1 one third of the time, thus, Circuit 1 "should" neuron will activate with a value of
1/3 and its "should-not" neuron with a value of 2/3.

3.1.4 Blocking Learning during Transients

In this section, we illustrate the need for blocking learning during transients. The simulations
are performed for the simple network shown in Fig. 3.9. This is the standard case where a
lower-level microcircuit (Circuit 1) drives the activity of a higher-level one (Circuit 2). We
only show the activities for the central s-pairs, that are the relevant ones for this example, and
the weights onto the "should" neurons of these s-pairs, although the case for the "should-not"
is symmetrical.

At the beginning of the simulation shown in Fig. 3.10, the association between Circuit 1
and 2 is learned. Then, Circuit 1 is switched off, causing Circuit 2 to deactivate too. However,
because the learning rate is very high relative to the neuronal dynamics, in the time that it
takes for Circuit 2 to switch off, the connection onto Circuit 1 is partly unlearned (since
Circuit 2 is erroneously predicting the presence of Circuit 1). Furthermore, when Circuit 1 is
presented again, it causes the activation of the "should" neuron of Circuit 2, but it unlearns
the association before Circuit 2 has had time to activate.

Even when the learning rate is reduced, as in Fig. 3.11, the weights also degrade. As
Circuit 2 activates, the weights onto Circuit 1 increase, because larger weights are needed to
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Circuit 1 Circuit 2

Fig. 3.9 Simple network where Circuit 1 strongly drives the activation of Circuit 2. Connec-
tions depicted in dotted lines are much weaker.

compensate for the smaller value in the activation of the "head" neuron in Circuit 2. This
weight saturates in the upper bound of weight allowed for the dendrite. At the same time,
the weight onto Circuit 2 diminishes as before, although now the "head" neuron manages to
activate. However, if the presentation time is not enough to relearn the association that has
been lost, the weight will continue to degrade on repeated presentations.

Thus, weights degrade during transients. In order to avoid it, we will simply block
learning for some time when a transient is detected. The way in which a "should" or "should-
not" neuron can identify these situations is by looking at the value of its own derivative.
Onsets and offsets of the "head" neuron will cause high derivatives in the activations of
"should" and "should-not" neurons. When the derivative exceeds the threshold that separates
these transients from other slower changes, learning is disabled for some time. A simulation
of this mechanism, showing the derivative of a "should" neuron and the enable signal for
learning can be seen in Fig. 3.12. Weights are protected from the transients and the circuit
operates as expected.
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Fig. 3.10 Circuit 1 should trigger the activation of Circuit 2 but fails to do so because it
unlearns the association before it succeeds in activating it.
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Fig. 3.11 With a reduced learning rate, Circuit 1 triggers the activation of Circuit 2 but partly
unlearns the association, which does not have time to recover, eventually leading to the
association being lost.
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Fig. 3.12 When the derivative of the "should" neuron (Diff(S)) is above a certain threshold,
learning is disabled for some time. This protects the weights from transients.
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3.1.5 Learning to Act

Finally, we show how the circuit can learn to produce behavior. The example that we
simulate is illustrated in Fig. 3.13. The system will receive motivational input for state A
in its motivational s-pair. If A is desired but not currently present, the "should" neuron in
this s-pair will activate. The system has to learn the association from this "should" neuron to
whatever is needed to make A happen. That will be B in the example. Thus, the system will
establish a connection between the motivational "should" neuron of A and that of B. This
chain could go on for several stages of the hierarchy until at the end some motor system uses
the mismatch signals to generate action.

In the first simulation (Fig. 3.14) we show a series of cycles where first the motivation for
A arrives, then B gets activated (and remains activated) and after a delay, A is presented. An
example of this could be that of learning that hot water is produced by leaving the tap turned
to the left.

motivation

3

A

B

2

1

Fig. 3.13 Learning to act. The network will establish a connection between the motivational
s-pair of the desired state A, and that of the state or action B that is required in order to bring
about A. In the simulations (figures 3.14 and 3.15), the motivation input for A will arrive
first, followed by the activation of B and then A.

Weight tagging is performed while the "should" neuron of A is active. The distribution
of weight update then happens once A has been achieved. This way, the system learns to
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associate the motivational "should" neuron to what was active right before the fulfillment of
the desire (in this case, B).

We plot the weights from the motivational "should" neuron of A onto two dendrites of
the corresponding neuron in B. Once the association has been learned, the unfulfilled desire
of A causes the activation of the motivational "should" neuron of B.
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Circuit B: S-Pair 2 receiving input from S-Pair 2 of Circuit A
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Weights onto dendrite 2 of SB
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Fig. 3.14 The circuit in Fig.3.13 learns the association from the motivational "should" neuron
of A to that of B.

In the simulation displayed in Fig. 3.15, the fulfillment of the desire and the action or
state that produces it do not overlap. An example of this could be learning that people come
and open the door after you ring the bell. In this case, we also show the evolution of the tags.
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After the action has been performed, its motivational s-pair is silenced so that the system
would not try to perform the action again in the small delay period.

At the beginning, the co-occurrence of the desire and the action increases the value of the
positive tag ("tag up"). After the action is performed, the tag decays exponentially. When
the desired state is achieved, the distribution of weight update is allowed and takes place
with the value that remains in the tag at that time. When the system learns the association,
it activates the motivational "should" neuron of B ahead of its occurrence. This causes the
negative tag to grow in the periods leading to the action, since positive values in the "should"
neuron always lead to depression of the weights that are causing it. However, the negative
tag will decay while the action is actually performed. At that point, positive tags can grow
if necessary. An equilibrium is reached when negative tags, larger but which start to decay
earlier, match positive tags, smaller but closer to the point where the tags are used.
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Fig. 3.15 The circuit in Fig.3.13 learns the association from the motivational "should" neuron
of A to that of B, even when the activations of A and B do not overlap and there is a small
delay between them. The third plot shows the weight tags. See text for explanations.
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3.2 Spatial Cognition and Navigation System

Here we present simulation results for the navigation system presented in the previous chapter
and reproduced again for convenience in Fig. 3.16, now labeling the s-pairs with the same
index that is used in the simulations.

direct motion

places

past places

odours
direction & 

distance

motivations

s-pair

1

s-pair

2 

s-pair

2 

s-pair

1 

s-pair

1

s-pair

2 

s-pair

3 

Fig. 3.16 Navigation system.

The system will learn the "pixelated" 1D environment shown in Fig. 3.17. The space
is composed of 6 positions. Three of them have a characteristic odor and thus become
represented as relevant places. The simulated agent will walk back and forth and learn the
relative distances and directions between these places, as well as their odors.

S-Pair 1 of odors receives simulated sensory input that drives the activation of the odors
at the corresponding places. S-Pair 1 of directions & distances receive simulated path
integration input that drives their activation. When the agent is about to leave a place, the
distance is reseted to 0, the direction is modified if necessary, and the "past" neurons for
places are reseted to the current value of the "head" neurons for places.

The learning process is shown in figures 3.18 and 3.19. All simulations will be presented
in this format. The first figure displays the activation of all neurons in a heat map, as shown
previously, but now also including the "past" neurons in beige. The second figure shows all
the weights onto "should" neurons, again through a heat map. The first plot in that figure, for
example, represents all the weights onto dendrite number 1 of "should" neurons in s-pair 2 of
the group of microcircuits coding for odors. The labels on the left indicate the number of the
microcircuit whose "should" neuron is receiving the connection with the weight displayed,
whereas the labels on the right indicate where the connections are coming from. "p" stands
for places, thus "p1" means that the connection is from the first place. "p1p" means that the
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P3
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direction 2

direction 1

Fig. 3.17 "Pixelated" 1D environment used in the simulations.

connection is from the past place cell coding for the place. "p1s" means that the connection
is from the (motivational) "should" neuron of the place. "o" stands for odors, "h" for heading
direction and "d" for distance.

In the simulation, the agent first encounters the second odor. Since the odor is unexplained,
it will recruit an uncommitted place neuron to represent it. The recruited place neurons will
have the same index as the odor because it makes the visualization easier to follow. At a
distance of 3, it will encounter odor number 3 and will recruit a new place neuron. Now it
will also learn that this new place, place 3, is at a distance of 3 in direction 2 from place
2. This proceeds until it has associated a place to each odor and has learned the relative
positions between them. Note that place number 2 can be reached in two ways (p1p + h2 +
d2 or p3p + h1 + d3). It will learn each combination in one dendrite. This is why "should"
neurons for places have two dendrites.

After learning, when the simulated agent is moved across the space, the corresponding
places get activated and the correct odors are not surprising. This can be seen at the end of
the simulation and at the beginning of the next one (Fig. 3.20). In this second simulation, the
agent first localizes itself upon finding odor number 2. The odor by itself (in the absence of
the correct metric information) is not enough to fully activate the place, and the odor is thus
partly unexplained. This triggers the mechanism that recruits neurons, but, since the neuron
for place 2 is already partly activated, the mechanism will "help" this neuron to become fully
active instead of recruiting a new one. After one pass, the odor landmarks are removed. In
the next passes, the network gradually gets lost. This happens because the lack of odors
partially inhibits the activation of the places and the effect builds up: since the network is not
sure that it has arrived to place 2, it will be even less sure that it has arrived to place 3 when
the odometric information indicates it. In as much as it is certain that it is in a place, it will
trigger the activation of the "should" neurons for the odors associated to the place.
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Fig. 3.18 The network learns the environment for the first time.
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Fig. 3.19 Evolution of the weights as the network learns the environment. See text for an
explanation of the plots.
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Fig. 3.20 The network gets lost when the odor landmarks are removed.
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In the simulation showed in figures 3.21 and 3.22, odor 3 is substituted by odor 4. At
first, when in place 3, the network will indicate that odor 3 is missing, activating its "should"
neuron, and will activate the "should-not" neuron for odor 4. However, it quickly learns the
new arrangement (the learning rate can of course be made slower).
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Fig. 3.21 Odor 3 is substituted for odor 4, generating mismatch signals until the network
adapts to the change.

The last simulation (figures 3.23 and 3.24) shows the network learning how to go from
one place to the next. So far, it had learned only the connections onto the s-pair of places
receiving metric information, that is, it could recognize when it had arrived at places, but
it could not use that information for traveling to them. For that, the network needs to learn
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Fig. 3.22 Evolution of the weights as odor 3 is substituted by odor 4.
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connections onto a motivational s-pair of distances and directions. These connections will
originate from the last place active (past places) and a motivational s-pair for places indicating
the place where the agent wants to go. This situation is analogous to first one showed in the
section "Learning to Act". Fig. 3.25 shows the activations for the next pass after those shown
in Fig. 3.23, since the scale there is too small. Each distance and direction occurs twice, for
example, the direction h2 is required for going from place 1 to place 2 (p1p + p2s) and for
going from place 2 to place 3 (p2p + p3s). Thus, each combination will be learned in one
dendrite.

After learning (Fig. 3.25), the desire to go to a place is reflected in the activation of
the motivational s-pair of distances and directions. If the current distance is not the one
required for arriving at the desired place, its "should-not" neuron will be activated, whereas
the "should" neuron of the required one will be activated. The same applies for the directions.
These mismatch signals could then be used by the motor system to drive locomotion.



62 Results

1

2

3

D
IS

TA
N

C
E

S-Pair 1 receiving
unmodelled

low-level input

S-Pair 2 receiving
input from

past- and should-places

1

2

D
IR

E
C

T
IO

N

unmodelled
low-level input

input from
past- and should-places

1

2

3

4

O
D

O
U

R

unmodelled
low-level input input from places

0 20000
Simulation steps

1

2

3

PL
A

C
E

input from distances,
directions and past-places

0 20000
Simulation steps

input from odours

0 20000
Simulation steps

S-Pair 3 receiving
unmodelled

motivation input

0.0

0.5

1.0

sh
ou

ld
no

t
0.0

0.5

1.0

sh
ou

ld

0.0

0.5

1.0

pa
st

0.0

0.5

1.0

he
ad

Fig. 3.23 The network learns how to navigate to places. Fig. 3.25 shows the next pass through
the environment at a better scale.
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Fig. 3.24 Evolution of the weights onto the motivational s-pairs (s-pair 2) of distances and
directions as the network learns to go from one place to the next. There are two combinations
of past and desired places that need to be associated to each distance and direction. Each
combination clusters onto a different dendrite.
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Fig. 3.25 After learning, the mismatch signals in s-pair 2 of distances and directions can be
used for controlling locomotion.



Chapter 4

Discussion

4.1 Summary and Conclusions

In this thesis, I have presented a mismatch detection neural circuit and applied it to a simple
navigation task. I have argued that mismatches can be of two fundamental types: mismatches
by excess, when there are elements in the world that are not supported by the model; and
mismatch by deficit, when there are missing elements in the world with respect to the model.
The mismatch detection circuit proposed can account for both types of mismatch whereas
other models typically focus on mismatch by excess.

Mismatch detection is pervasive in cognition. We engage in it constantly as we perceive
the world. Doing so provides two important advantages. First, it signals the presence of
elements or situations that are unexpected and thus, the agent has not prepared for, often
demanding changes in behavior. This is particularly relevant in the context of a system with
limited cognitive capacities that can not process all stimuli to the same extent, and thus needs
to select which stimuli to attend to. It may seem paradoxical that a system with limited
resources is, nevertheless, employing so many of them for mismatch detection. However,
the process of detecting mismatches can be performed in a simple and massively parallel
fashion, whereas other higher-level cognitive functions seem to be much more limited, for
instance by the bottleneck of working memory that can only hold the information related to
3 to 5 objects (Cowan, 2010).

Mismatches can arise because the activation pattern in the model does not reflect the
elements present in the environment, in which case the mismatch is corrected simply by
modifying the activation pattern. Alternatively, mismatches can result from discrepancies
between the world and the structure of the model, thus requiring that the structure be changed
by learning. In this latter case, the detection of mismatches provides a second advantage by
explicitly calculating an error signal that can be used for learning, for example, by modifying
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connections in proportion to the error. Furthermore, the presence of mismatch signals can be
used to determine when a new pattern is being experienced and neurons need to be recruited
to represent it, as in the model by Carpenter and Grossberg (1988).

Finally, mismatches are also relevant when it comes to comparing the world to your
desires. In this case, they directly indicate situations in which actions need to be taken.

The mismatch detection circuit here proposed is based on contrasting the presence of
some feature with a priori predictions or a posteriori justifications. This is done by making
the two elements to be compared converge on the same neuron with weights of opposite sign.
Mismatch by excess results from the feature being excitatory and the prediction inhibitory,
whereas mismatch by deficit results from the prediction being excitatory and the feature in-
hibitory. The balance between excitation and inhibition is thus fundamental for the operation
of the circuit and typically excitation will be followed by inhibition. This is in agreement
with observations about the behavior of excitation and inhibition in the cortex, reviewed in
Isaacson and Scanziani (2011). It has been observed that in auditory, somatosensory and
visual cortex, synaptic excitation is followed after a few milliseconds by a surge in inhibition.
This finding is often interpreted in the context of gain control or sharpening of tunning curves,
but mismatch detection may offer an alternative or complementary explanation.

The proposed mismatch detection circuit is similar to the circuits employed for predictive
coding (Rao and Ballard (1999), Bogacz (2017)). However, unlike in those circuits, both
types of mismatch are represented explicitly by the positive activation level of some neuron.
This seems to be in agreement with findings that report increased activity in the cortex by
both types of mismatch and not just mismatch by excess. A further difference between our
model and predictive coding circuits stems from the fact that in the latter, only error neurons
output their values to other areas, meaning that explained stimuli virtually disappear for the
system. In contrast, in the mismatch detection circuit, connections between different circuits
stem primarily from their "head" neurons that signal the presence of the feature. We believe
that this fits better with introspective experience and is more advantageous for the production
of flexible behavior.

The proposed circuit makes use of dendritic nonlinearities, similar to the ones that have
been found in biological neurons. This increases the discriminatory capacity of neurons,
essentially converting them into two-layer networks.

Learning is governed by a Hebbian rule, where weight update is proportional to the acti-
vations of the pre- and post-synaptic neurons. However, since it is proportional, specifically,
to the negative value of the post-synaptic neuron, weights self-normalize without the need for
any additional homeostatic mechanism. The learning rule developed ensures that different
input combinations cluster automatically onto different dendrites of the neuron. It also makes
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sure that connections from equally reliable inputs converge to the same weight. Finally, it
can also be used for learning the association between desires and the actions that need to be
taken in order to fulfill them. These properties rely on taking advantage of several sources
of noise, and on the division of learning into a phase of weight "tagging" followed by one
of weight update distribution. This was developed out of necessity, but bears a high degree
of similarity to the process of synaptic tagging and capture that is believed to take place in
biological neurons, and thus can offer insights into why this phenomenon occurs.

Clustered plasticity is particularly amenable to receiving insights from trying to engineer
a system that performs this function, for it is conceptually a relatively simple phenomenon. It
is clear that two elements are required: a mechanism that makes weights grow preferentially
where there is already the largest amount of weight, and a mechanism that ensures that
clusters do not overlap, which would render them useless. A biological candidate to the
second mechanism has been recently reported by Oh et al. (2015), who show that stimulation
at several clustered spines led to shrinkage and weakening of nearby unstimulated synapses.
This shrinkage does not seem to depend on competition for resources between synapses
since it can be dissociated from the growth of the stimulated synapses, thus suggesting that it
depends on some local signal that is produced when a threshold of activation is surpassed.
I modeled this phenomenon and, as expected, in conjunction with the first mechanism,
it ensured that different input combinations clustered onto different dendrites. However,
nothing prevented a new cluster from "overwriting" an older one. If memories are to be
protected, some mechanism has to ensure that clusters grow onto unoccupied dendrites or
dendrites that encode patterns that are not very useful for the system. To achieve this, a
competition for resources or space between synapses, based on some measure of fitness,
seems to be necessary and is the solution that I have implemented.

The mismatch detection circuit has been applied to a navigation task. This practical
application demonstrates the capabilities of the circuit, but has also been very useful for
stimulating its development. For example, multiple dendrites were introduced because of the
need to separate the different ways in which a place can be reached, and the use of mismatch
neurons for generating behavior was motivated by the need of having some way of telling
how to go from one place to the next.

In the introductory literature review, it was argued that the animal brain does not encode
a globally coherent Cartesian representation of space. This is beneficial, since maintaining
such a coherent representation based on noisy sensory and odometric input is computationally
challenging, as demonstrated by artificial SLAM systems. It was also argued that recognition
of places and objects are likely to be performed in a similar way, and that the challenges
faced in recognition of objects invariant to translation, scale and rotation further supports
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a representation of space based on relative positions between features. Thus, in our model,
space is represented as a series of places, identified by some landmark and linked by their
relative distances and directions. Specifically, directions are specified with respect to some
local reference frame. This provides more flexibility than purely relative directions and is in
agreement with the well established finding of head direction cells in the rodent brain.

The model has learned a simple virtual environment composed of a "pixelated" 1D space
where landmarks are odors. The choice of odors for landmarks is motivated by the fact
that odors are local. If we had employed a type of stimulus that can be perceived at a
certain distance from the current place, such as visual stimuli, the system would become
more complex. The same kind of representation of space would be possible, but additional
mechanisms would be necessary for combining distances and directions between landmarks
estimated from locomotion and vision.

The system can detect when expected odors are missing, or when unexpected odors
appear. This is similar to the findings reported by Fyhn et al. (2002), who measured the
response of hippocampal cells to first time dislocation of target objects and found increased
firing rates in some cells when objects were moved away from their learned positions.

Finally, it is worth noticing that a complete biologically inspired model of navigation
probably falls close to a model of general intelligence, since navigation is a very complex
task that involves a hard pattern recognition problem, the representation of past and future
events, and the planning and execution of behaviors.

4.2 Outlook

The investigation carried out in this thesis has opened multiple research lines that would be
interesting to pursue in the future.

First, with respect to the mismatch detection circuit, it would be valuable to further assess
its biological plausibility, and correct the features that are found to be less acceptable. The
rules for clustered plasticity that have been developed depend on time-varying noise for
initiating the clustering. Perhaps it would be more realistic and efficient to introduce fixed
noise in the "ease" with which each input can cluster onto each dendrite, which would depend
in the brain on the physical proximity of the elements involved.

The learning rule dictates how connections are established between activated microcir-
cuits, but does not say how these activations come about in the first place when nothing is
known. Throughout most simulations, I manually activated the microcircuits, and only at the
end a very rough system was introduced for automatically recruiting place neurons in the
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navigation system. If the mismatch detection circuit is to be of any value, a self-organizing
mechanism that recruits neurons to represent new patterns needs to be added.

Further refinements would involve a better measure for weight fitness, that can saturate
and decrease (the current one only increases), or a mechanism for dynamically changing the
learning rate based on the amount of mismatch.

Another problem that currently limits the capabilities of the circuit, as well as that of most
neural systems proposed so far, is the lack of a mechanism capable of handling combinatorial
structures in a flexible way (Fodor and Pylyshyn, 1988). This is very related to the binding
problem (Treisman, 2002). Compare the sentences "John ate a pig" and "A pig ate John".
They are composed of the same elements but the second one is much more concerning. In
the context of the mismatch detection circuit, the second sentence should elicit a higher
mismatch signal. However, it is not clear how a neural system can represent these two
situations without resorting to specialized neurons that would bind each compound (e.g.
John-subject, John-object, etc.), which would however be a very inefficient and unpractical
solution. Different models have been proposed for how this binding could be performed
dynamically by reuniting the bound elements under a common dimension, such as their
associated position in space, the time at which neurons encoding the pattern fire (Singer
(2007); as in the system developed by Shastri (1999)), or even signature activaton patterns
(Lange and Dyer, 1989).

Possibly related to this, the mismatch detection circuit is lacking a good representation
of time where, for example, different events could be represented as having happened at
different points in the past.

With respect to the navigation system, much can be done. First, distances and directions
should be represented in a more continuous fashion, and one that would easily allow distances
and directions that are close to each other to be recognized as such. A solution for this could
be to represent distances and directions using populations of neurons such that distances and
directions that are close to each other partly overlap in their representations. This would allow
for them to be compared based on their degree of overlap. Using this method, the system
could, for example, decide whether the memorized place for a landmark has been reached
(with some path integration error) or the landmark is new and a new place neuron circuit
needs to be recruited. Note that the systems learns that it has arrived at a place if the triple
(past-place, distance, direction) is satisfied. If distances and directions are represented by
populations, and given that the learning rule homogenizes the weights across all inputs, the
places should also be represented by populations of the same size if they are to be weighted
in by the same amount. This would also make the system very robust to noise, and it would
explain why it seems to be relatively easy to find place cells in the brain. Once continuous
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distances and directions can be represented, extending the model to work in 2D would be
trivial.

Another issue that needs to be resolved is how to handle the repetition of landmarks
in the environment. Ideally, if the agent is disoriented and sees a landmark that occurs in
several known positions, it should entertain simultaneously the hypothesis that it is at all
those positions, and use future information to disambiguate its real location. Additionally, the
symmetry in the weights onto "should" and "should-not" neurons would need to be broken,
since a repeated landmark should not elicit a strong "should" signal for any of the places
where the landmark appears, but should inhibit their "should-not" neurons.

Furthermore, in the model, heading direction is given as an unmodeled simulated input,
but a neural mechanism should be developed that could account for the production of this
signal based on a combination of odometric and sensory information.

Finally, the model could be extended to operate hierarchically at different spatial scales,
as well as to combine distances and directions obtained from locomotion and vision such
that the same model could account for the recognition of objects and places.

I look forward to keep working on these and related issues.
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